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Abstract. This report contains results of analysis done during an FY08 feasibility study in-
vestigating the use of adjoint methodologies for a posteriori error estimation for hydrodynamics
simulations. We developed an approach to adjoint analysis for these systems through use of modified
equations and viscosity solutions. Targeting first the 1D Burgers equation, we include a verification
of the adjoint operator for the modified equation for the Lax-Friedrichs scheme, then derivations
of an a posteriori error analysis for a finite difference scheme and a discontinuous Galerkin scheme
applied to this problem. We include some numerical results showing the use of the error estimate.
Lastly, we develop a computable a posteriori error estimate for the MAC scheme applied to stationary
Navier-Stokes.

1. Introduction. The adjoint-based approach to a posteriori analysis of the ef-
fects of perturbation and error on solutions of differential equations uses the adjoint
operator to determine the global effects of the local introduction of error. The solution
of the adjoint operator carries the stability information that allows an accurate quan-
tification of the effects of propagation, accumulation, and cancelation of perturbations
[7]. A key issue with using adjoint-based analysis for nonlinear differential equations
is defining the correct adjoint [11, 6]. In general, there are multiple possibilities for a
nonlinear problem.

In recent years, there has been significant progress in the analysis of properties
of solutions of nonlinear conservation laws using the viscosity solution method, which
employs the adjoint operator associated to the stabilized version of the conservation
law provided by a vanishing viscosity term [4, 2, 3]. This analysis has established
existence, uniqueness, and smoothness properties of solutions by means of properties
of the adjoint operator. The stabilized version of the problem is associated with a
unique adjoint operator, so in this sense, we can think of the adjoint operator of the
stabilized problem as the “right” adjoint operator for treating the stability properties
of the solution of the original conservation law.

These observations are particularly relevant for numerical methods for hydrody-
namic simulations that depend on some kind of stabilization procedure. In this case,
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the stabilization procedure affects the definition of the correct adjoint operator that
should be associated with the numerical method. Moreover, this operator may or may
not be particularly close to the adjoint operator associated with the viscosity solution
of the problem. We investigate the connection between a numerical method, and any
stabilization procedure, and the definition of an adjoint operator that is useful for
a posteriori error analysis. The goal is to consider how the definition of the adjoint
operator reflects the stability properties of the numerical solution. In this work, we
explore the definition and use of adjoint operators for error and perturbation analysis
for the numerical solution of hydrodynamic properties. We pursue two independent
approaches.

First, we consider the problem of defining the correct adjoint operator for a nu-
merical scheme that includes stabilization. As a first step, we consider the classic
method of the modified equation for the analysis of a numerical method [12]. The
modified equation associated with a numerical method for a differential equation is a
new differential equation that has the property that the numerical approximation is
a better approximation of the solution of the modified equation than of the original
equation. A natural idea is to use the adjoint operator for the modified equation as
the adjoint operator for the numerical method.

We undertook to address two questions that arise in this approach:
• Can we identify the adjoint for the modified equation for a numerical method

as a reasonable candidate to be the adjoint for the numerical scheme?
• Can we use the adjoint of the modified equation for error analysis?

We carry out this investigation for the Lax-Friedrichs scheme.
Our second approach to using adjoint operator-based error analysis for hydrody-

namic simulations is to pursue the extension of the analysis to a stable and accurate
finite-volume scheme for the Navier-Stokes equations. We consider the so-called MAC
scheme [9, 10], which along with closely related variations, is well-used in the Depart-
ment of Energy Laboratories. The technical issue here is that the a posteriori error
analysis is typically applied only to finite element methods, whereas the usual presen-
tation of a finite volume method lacks the variational formulation that is necessary
for the use of the adjoint operator. Following [8], we reformulate the MAC scheme
as a mixed finite element method with a special quadrature, and then apply the a
posteriori analysis to this new formulation.

This report is organized as follows. The next section introduces the idea of defin-
ing an adjoint operator for a numerical scheme applied to a conservation law by using
the viscosity solution and modified equation. Section 3 verifies the adjoint equation
to the modified equation for the Lax-Friedrichs scheme applied to Burger’s equation.
Section 4 derives a posteriori error analysis for a finite difference scheme and a dis-
continuous Galerkin scheme equivalent to the Lax-Friedrichs method and presents
some numerical results. Section 5 derives a computable a posteriori error estimate for
the MAC scheme applied to stationary Navier-Stokes. The last section makes some
conclusions.

2. Defining adjoint operators using the viscosity solution and the mod-
ified equation. An important issue for a posteriori analysis is defining the appro-
priate adjoint operators for both the original problem and its discretizations. For
nonlinear problems in general, there is not a unique definition, see[11]. In addition,
discretization issues, such as stabilization, may also affect the definition of an adjoint
operator.

For the conservation law, we propose to use the adjoint operator associated with
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the vanishing viscosity solution. Suppose u denotes the solution of the conservation
law

∂u

∂t
+
∂f(u)
∂x

= 0. (2.1)

We set A(u) = f ′(u) and for small ε > 0, we let uε solve

∂uε

∂t
+A(uε)

∂uε

∂x
= ε

∂2uε

∂x2
. (2.2)

Note that we are ignoring boundary conditions in the discussion below and we assume
that appropriate boundary conditions are imposed on the solution. In practice, it is
important to consider the boundary conditions when defining adjoint operators.

The solution uε is the vanishing viscosity solution. The introduction of the diffu-
sion term stabilizes the problem, which makes it possible to prove strong properties for
uε. Moreover, we can prove that uε converges to the physically meaningful (entropy
decreasing) solution u of (2.1) and subsequently deduce properties of the solution u.
This analysis uses the adjoint problem

−∂ηε

∂t
−A(uε)∗

∂ηε

∂x
= ε

∂2ηε

∂x2
(2.3)

that can be associated with (2.2) in a natural way.
To determine an adjoint for a numerical method, we consider the method of the

modified equation. A modified equation for a numerical method for a given differen-
tial equation is another differential equation that the numerical scheme approximates
the solution of with higher accuracy than it approximates the solution of the orig-
inal problem. Typically, the modified equation can be identified through a Taylor
approximation analysis and is obtained by adding higher order derivative terms with
coefficients depending on the discretization parameters to the original equation.

We consider the linear version of Burgers equation,

ut + aux = 0. (2.4)

We construct a discrete grid {xj , tn} in space-time, with spacing h and k in space and
time respectively. The explicit upwind scheme is

Un+1
j − Un

j

k
+ c

Un
j − Un

j−1

h
= 0. (2.5)

We define the truncation error

εnj (u) = un+1
j − un

j + η(un
j − un

j−1), η = ck/h.

Using Taylor’s theorem, it is straightforward to show that the truncation error satisfies

|εnj (u) − k(ut(xj , tn) + aux(xj , tn)) = O(k2, kh).

If we let w solve the modified equation

wt + awx =
ah

2

(
1 − ak

h

)
wxx (2.6)
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then ∣∣∣∣εnj (w) − k

(
wt(xj , tn) + awx(xj , tn) − ah

2

(
1 − ak

h

)
wxx

)∣∣∣∣ = O(k3, kh2).

In other words, U is a closer approximation of w than of the original solution u.
For the Lax-Friedrichs scheme,

Un+1
j =

1
2
(Un

j−1 + Un
j+1) −

k

2h
a(Un

j+1 − Un
j−1) = 0, (2.7)

the modified equation is

wt + awx =
h2

2k

(
1 −

(
ak

h

)2
)
wxx. (2.8)

The modified equation for the Lax-Wendroff scheme for (2.4) is

wt + awx =
h2a

6

(
a2k2

h2
− 1

)
wxxx. (2.9)

The modified equation for the Beam-Warming scheme for (2.4) is

wt + awx =
h2a

6

(
ak

h
− 1

)(
ak

h
− 2

)
wxxx. (2.10)

We show some solutions in Fig. 2.1.

1.0

.5 1.0

.5

True solution
Modified equation for Lax Wendroff
Modified equation for Lax Friedrichs

Fig. 2.1: Plots of the solutions of transport equation, the modified equation for the
Lax-Friedrichs scheme (2.8), and the modified equation for the Lax-Wendroff scheme
(2.9). The initial data is a pulse of height 1 located in [−.3, 0], the transport coefficient
a = 1, and the solutions are shown at time .5.
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We suggest that the adjoint operator corresponding to the modified equation is
a natural choice for an adjoint operator for the corresponding difference scheme. For
example, we use

−φt − aφx =
h2

2k

(
1 −

(
ak

h

)2
)
φxx + ψ (2.11)

as the adjoint operator for the Lax-Friedrichs scheme. For the Lax-Wendroff scheme,
we propose

−φt − aφx =
h2a

6

(
a2k2

h2
− 1

)
φxxx + ψ. (2.12)

For data, we choose ψ = 1/T where T is the final time of computation while
the “initial” data for the adjoint problem posed at time T is 0. This corresponds to
choosing

1
T

∫ T

0

∫ ∞

−∞
u(t, x) dxdt, (2.13)

as the quantity of interest. We show adjoint solutions in Fig. 2.2. The differences
in the stability properties of the two problems corresponding to Lax-Friedrichs and
Lax-Wendroff is evident.

0 1

1.0

-1 0 1

1

2

-1

Fig. 2.2: Right: A solution of the adjoint equation for Lax-Friedrichs. Left: A solution
of the adjoint equation for Lax-Wendroff. The adjoint data is ψ = 1, the transport
coefficient a = 1, and the solutions are shown at time .5.

Alternatively, we can specify ∫ ∞

−∞
u(T, x) dx (2.14)

as the quantity of interest by choosing ψ = 0 and setting the initial data for the
adjoint problem at time T to be 1. We show a solution in Fig. 2.3.

3. Verifying the adjoint equation for the modified equation. In this first
calculation, we verify that (2.11) is the correct adjoint for the modified equation (2.8)
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-1 0 1

1

2

Fig. 2.3: A solution of the adjoint equation for Lax-Friedrichs corresponding to a
quantity of interest at the final time T = .5.

for the Lax-Friedrichs scheme applied to Burger’s equation. Analogous computations
hold for other difference schemes. We set

c(h, k) =
h2

2k

(
1 −

(
ak

h

)2
)

so that (2.11) becomes

−φt − aφx = c(h, k)φxx + ψ. (3.1)

We assume that ũ denotes a solution of a problem obtained from (2.8) by small
perturbations of the coefficients. We let w̃ = ũ − u denote the error. Because the
problems are linear and the residual of u is zero, we have

w̃t + aw̃x − c(h, k)w̃xx = R̃ũ(x, t),

where we assume that the residual R̃ũ is small. Integrating, we have

∫ T

0

∫ ∞

−∞
R̃ũ(x, t)φ(x, t) dxdt =

∫ T

0

∫ ∞

−∞

(
w̃t + aw̃x − c(h, k)w̃xx

)
φdxdt.

We integrate by parts in each term,

∫ T

0

∫ ∞

−∞
w̃tφdxdt =

∫ ∞

−∞

(
φ(T )w̃(T ) − φ(0)w̃(0)

)
dxdt−

∫ T

0

∫ ∞

−∞
φtw̃ dxdt.

Since φ(T ) = 0 and assuming that the initial error of the perturbed solution is zero,
w̃(0) = 0, the boundary terms vanish. Similarly, assuming that φ→ 0 as x→ ±∞,

∫ T

0

∫ ∞

−∞
aw̃xφdxdt = −

∫ T

0

∫ ∞

−∞
aw̃φx dxdt.
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Assuming in addition that w̃ → 0 as x→ ±∞,

∫ T

0

∫ ∞

−∞
cw̃xxφdxdt =

∫ T

0

∫ ∞

−∞
cw̃φxx dxdt.

We obtain∫ T

0

∫ ∞

−∞
R̃ũ(x, t)φ(x, t) dxdt =

∫ T

0

∫ ∞

−∞

( − φt − aφx − c(h, k)φxx

)
w dxdt.

Using (3.1), we conclude
Theorem 3.1. Let ũ denote a perturbed solution of the modified equation for the

Lax-Friedrichs method, R̃ũ denote its residual, φ denote the solution of the adjoint
problem associated with the modified equation. Then

∫ T

0

∫ ∞

−∞
(ũ − u) dxdt = −

∫ T

0

∫ ∞

−∞
R̃ũφdxdt. (3.2)

For the alternate quantity of interest (2.14), we have

∫ ∞

−∞
(ũ− u)(T, x) dx = −

∫ T

0

∫ ∞

−∞
R̃ũφdxdt. (3.3)

These are the expected error representation formulas and this shows that we have
defined the correct adjoint.

We use the fact that the differential equation is linear and the scheme is translation
invariant. The analysis is more complicated for a nonlinear problem. We again form
the error w̃, but now we evaluate the residual using linearization. The difference
scheme is not translation invariant in general, so c = c(u), and this has to be included
in the integration by parts.

4. An a posteriori analysis using adjoint operators.

4.1. Direct a posteriori analysis for a finite difference scheme. Adjoint-
based a posteriori analysis is generally applied to finite element methods because it
uses variational analysis. Typically, applications to a finite difference methods are
carried out by first recasting the finite difference scheme as a finite element method
with quadrature to evaluate the integrals. We provide an example of this approach
in Sec. 5 below. In this section, we explore a direct application of adjoint-based a
posteriori analysis to finite difference schemes using the modified equations discussed
in Sec. 3.

The idea is based on the use of the modified equation for accuracy analysis. The
solution of the modified equation for a difference scheme has the property that its local
truncation error is higher order than the truncation error of the solution of the original
problem. From the higher order truncation error, we can prove that the difference
scheme better approximates the solution of the modified equation than the solution of
the original problem. Our conjecture is that the residual of a finite difference scheme
in its modified equation is higher order than its residual in the original problem. This
makes it natural to use the adjoint of the modified equation for a posteriori analysis
of the finite difference scheme.

To make this concrete, we have to define the residual of a finite difference approx-
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imation. The residual is obtained formally by substituting the approximation into
the weak form of the differential equation. To make this substitution, we define a
function that interpolates the values of the finite difference scheme.

For the Lax-Friedrichs scheme, we first recognize the weak form of the error
representation (3.2),

∫ T

0

∫ ∞

−∞
R̃ũφdxdt =

∫ T

0

∫ ∞

−∞

(−φt−aφx

)
ũ dxdt+

∫ T

0

∫ ∞

−∞
c(h, k)φxũx dxdt. (4.1)

We let U denote the piecewise linear, continuous function that interpolates the values
of the Lax-Friedrichs approximation Un

j . This function has sufficient regularity to be
substituted directly into (4.1) and its residual resembles the residual of the standard
finite element approximation of the modified equation. Given the close connection
between the residual of U and the truncation error, we assume that

∫ T

0

∫ ∞

−∞
R̃Uφdxdt = O(k2, kh).

We assume that the quantity of interest is (2.14). We begin the error analysis by
decomposing∫ ∞

−∞
(U − u)(T, x) dx =

∫ ∞

−∞
(U − w)(T, x) dx +

∫ ∞

−∞
(w − u)(T, x) dx,

= I + II,

(4.2)

where recall that w solves the modified equation (2.8). Applying (3.2) to U gives

I =
∫ ∞

−∞
(U − w)(T, x) dx =

∫ T

0

∫ ∞

−∞
R̃Uφdxdt = O(k2, kh).

Expression II measures the impact of the difference between the solution of the origi-
nal problem and the modified equation. In order to estimate this term, we decompose
it as ∫ ∞

−∞
(w − u)(T, x) dx =

∫ ∞

−∞
(w − uε)(T, x) dx +

∫ ∞

−∞
(uε − u)(T, x) dx,

= IIa+ IIb,

(4.3)

where recall that uε is the vanishing viscosity solution of (2.2).

Using the theory for the vanishing viscosity solution, we have

IIb = O(ε1/2).

We can not estimate this term, since that requires the solution of the original problem,
but we can make this term small by choosing ε small.

This leaves IIa to be estimated. The advantage gained by the decomposition
(4.3) is that we have reduced the a posteriori analysis to solutions of problems that
have well defined adjoint problems. We now consider the solution w of the modified
equation as a perturbed solution of the vanishing viscosity problem (2.2). We use the
solution η of the adjoint (2.3) for the vanishing viscosity problem. The analysis is
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exactly the same as for Theorem 3.1. We obtain

∫ ∞

−∞
(w − uε)(T, x) dx = −

∫ T

0

∫ ∞

−∞
Rwη dxdt, (4.4)

where the residual is

Rw = (c(h, k) − ε)wxx.

We summarize
Theorem 4.1. Let u denote the solution of the original problem, U denote the

Lax-Friedrichs approximation, R̃U denote the residual of U in the modified equation,
φ denote the solution of the adjoint for the modified equation, Rw the residual of the
solution of the modified equation in the vanishing viscosity problem, η the solution of
the adjoint for the vanishing viscosity problem, and ε > 0 a small number. Then,

∫ ∞

−∞
(U − u)(T, x) dx =

∫ T

0

∫ ∞

∞
R̃Uφdxdt +

∫ T

0

∫ ∞

∞
Rwη dxdt+ O(ε1/2). (4.5)

Using (4.5) requires computing approximations of the adjoint solutions φ and η.
The residual R̃U can be computed directly by substitution. The integrand in the
second term

Rw =

(
h2

2k

(
1 −

(
ak

h

)2
)

− ε

)
wxxη

is small in regions where η and wxx are small. Otherwise, we must make it small by
choosing h and k so that

h2

2k

(
1 −

(
ak

h

)2
)

≈ ε,

which effectively places a size restriction on the discretization. It would be interesting
to pursue adaptive error control based on this criterion.

Remark 4.1. Extension of this analysis to the Lax-Wendroff scheme is an inter-
esting problem. Because the modified equation for the Lax-Wendroff scheme involves
a third order spatial derivative, we could use a Hermite spline with continuous first
derivatives to define the function U in order to evaluate the residual in the weak error
representation formula. The residual of U would now be

Rw =
h2a

6

(
a2k2

h2
− 1

)
wxxx − εwxx.

It is not clear that this expression can be made small!
This situation suggests the use of a blended scheme that becomes Lax-Wendroff in

regions where the solution is smooth but Lax-Friedrichs in regions where the solution
is nonsmooth. The analogous estimates for such a blended scheme might indicate how
the blending should be carried out in an adaptive fashion as the solution progresses.

4.2. An a posteriori analysis of the time error in discontinuous Galerkin
discretization. We next present an a posteriori error analysis for the numerical
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solution of the systems of ordinary differential equations that result after discretizing
a system of conservation laws using the discontinuous Galerkin method in space. The
discontinuous Galerkin method with an appropriate choice of flux function yields
many of the standard finite difference approximations.

Following Cockburn [5], we consider the problem⎧⎪⎨
⎪⎩
ut + f(u)x = 0, 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t), 0 < t < T,

u(x, 0) = u0(x), 0 < x < 1.
(4.6)

4.2.1. Discretization in space. We partition (0, 1) into {xj+1/2}N
j=0 and set

J = (xj−1/2, xj+1/2), hj = xj+1/2 − xj−1/2 for j = 1, · · · , N . For simplicity, we
assume that hj = h for all j.

We compute a semidiscrete approximation uh(t) to u(t) such that for each 0 <
t < T , uh belongs to

Vh =
{
v ∈ L1(0, 1) : v|Jj ∈ P0(Jj), j = 1, · · · , N}

,

where P 0(Jj) denotes the constant polynomials on the interval.
The weak formulation of (4.6) over Jj reads

⎧⎪⎨
⎪⎩

∫
Jj
∂tu(x, t)v(x) dx − ∫

Jj
f(u(x, t))∂xv(x) dx

+f(u(xj+1/2, t))v(x
−
j+1/2) − f(u(xj−1, t))v(x+

j−1/2) = 0,∫
Jj
u(x, 0)v(x) dx =

∫
Jj
u0(x)v(x) dx,

(4.7)

for j = 1, · · · , N .
To formulate the finite element approximation, which is discontinuous across

nodes, we replace the flux f by a numerical flux,

f(u(xj+1/2, t)) → h(u(x−j+1/2, t), u(x+
j+1/2, t)).

Since uh(x, t) is constant on each Jj , we write

uj(t) = uh(x, t), x ∈ Jj .

The semidiscrete discontinuous Galerkin finite element approximation satisfies{
∂tuj(t) +

(
h(uj(t), uj+1(t)) − h(uj−1(t), uj(t)

)
/h = 0,

uj(0) =
∫

Jj
u0(x) dx,

(4.8)

for j = 1, · · · , N .
Various choices of the numerical flux lead to well known finite difference schemes.

We consider the Lax-Friedrichs flux

h(a, b) =
1
2
(f(a) + f(b) − C(b − a))

where the classic Lax-Friedrichs scheme uses C = 1, but another choice is

C = max
inf uh≤s≤sup uh

|f ′(s)|.
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This yields the system{
∂tuj(t) = − 1

2h

(
f(uj+1(t)) − f(uj−1(t)) + C

2

(
uj+1 − uj−1

)
,

uj(0) =
∫

Jj
u0(x) dx,

(4.9)

for j = 1, · · · , N . Imposing periodic boundary conditions, we can write this as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂tu1(t) = − 1

2h

(
f(u2(t)) − f(uN(t)) + C

2

(
u2 − uN

)
,

∂tuj(t) = − 1
2h

(
f(uj+1(t)) − f(uj−1(t)) + C

2

(
uj+1 − uj−1

)
, 2 ≤ j ≤ N − 1,

∂tuN (t) = − 1
2h

(
f(u1(t)) − f(uN−1(t)) + C

2

(
u1 − uN−1

)
,

uj(0) =
∫

Jj
u0(x) dx,

(4.10)

4.3. Discretization in time. We set

g(u) =

⎛
⎝ − 1

2h

(
f(u2(t)) − f(uN (t)) + C

2

(
u2 − uN

)
− 1

2h

(
f(uj+1(t)) − f(uj−1(t)) + C

2

(
uj+1 − uj−1

)
j = 2, · · ·N,

− 1
2h

(
f(u1(t)) − f(uN−1(t)) + C

2

(
u1 − uN−1

)
⎞
⎠

so (4.10) becomes simply

u′(t) = g(u), 0 < t < T. (4.11)

To discretize in time, we also use a discontinuous Galerkin method with piecewise
constant approximations. We discretize [0, T ] by {ti} with t0 = 0, tM = T , ti− ti−1 =
k, and Ii = (ti−1, ti] for all i. We set U0

j = uj(0) for j = 1, · · · , N . For an implicit
approximation for i = 1, · · · ,M , we compute U so that U |Ii ∈ P0(Ii) satisfies∫

Ii

(Ut − g(U)) · v dt+
(
Ui − Ui−1

) · vi−1 = 0, (4.12)

for all v with v|Ii ∈ P0(Ii). Note that Ut ≡ 0. We use an explicit approximation
computed by applying the left-hand point rectangle rule to evaluate the integral∫

Ii

g(U) · v dt→ g(Ui−1)k · v.

We end up with

U i = U i−1 + kg(U i−1). (4.13)

This can be rewritten as the Lax-Friedrichs scheme,

U i+1
j = U i

j −
k

2h
(
f(U i

j+1) − f(U i
j−1)

)
+
Ck

2
(
U i

j+1 − U i
j−1

)
, (4.14)

with suitable interpretation on the boundaries.

4.4. An a posteriori analysis of the time error. We analyze the error from
discretization in time assuming that the space discretization is fixed.

Since the problem (4.10) is nonlinear, we linearize to form an adjoint problem.
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We define

ḡ′(u, U) =
∫ 1

0

g′(sU + (1 − s)u) ds,

so that

ḡ′(u, U)(U − u) = g(U) − g(u).

We define the adjoint problem{
−φ′(t) − ḡ′(u, U)�φ = 0, T > t ≥ 0,
φ(T ) = ψ.

(4.15)

This corresponds to the quantity of interest u(T ) · ψ. We set e = U − u.

Using the standard analysis for the discontinuous Galerkin method ([7]), we obtain
the error representation

e(T ) · ψ =
M∑
i=1

∫
Ii

(U ′ − g(U)) · (φ− πkφ) dt+
M∑
i=1

U i−1 · (φ− πkφ)|t=ti−1 , (4.16)

where πk is any projection into the piecewise constant functions with respect to the
discretization {ti}. We choose the projection to interpolate φ at the nodes, which
causes the second term to vanish. We obtain

e(T ) · ψ =
M∑
i=1

∫
Ii

(U ′ − g(U)) · (φ− φ(ti−1)) dt. (4.17)

To use (4.17), we compute a numerical solution of (4.15), typically replacing

ḡ′(u, U) → g′(U).

We solve this with a second order or higher method in order to be able to evaluate
the projection expression.

We have to alter the representation (4.17) in order to treat the explicit method
(4.13) used in practice. This becomes

e(T ) · ψ =
M∑
i=1

∫
Ii

(U ′ − g(U)) · (φ− φ(ti−1)) dt

+
M∑
i=1

∫
Ii

(g(U) − g(U i−1) · (φ− φ(ti−1)) dt. (4.18)

The first expression on the right simplifies

M∑
i=1

∫
Ii

(U ′ − g(U)) · (φ− φ(ti−1)) dt = −
M∑
i=1

g(U i) ·
∫

Ii

(φ − φ(ti−1)) dt.
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The second expression on the right

M∑
i=1

∫
Ii

(g(U) − g(U i−1) · (φ− φ(ti−1)) dt

=
M∑
i=1

(g(U i) − g(U i−1) ·
∫

Ii

(φ− φ(ti−1)) dt (4.19)

is a quadrature error term.

4.4.1. A computational example. We discretize the problem⎧⎪⎨
⎪⎩
ut + uux = 0, 0 < x < 1, 0 < t,

u(0, t) = u(1, t), 0 < t,

u(x, 0) = u0(x), 0 < x < 1,
(4.20)

in space using the dG/Lax-Friedrichs method with 50 space nodes, where

u0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 < x < .4,
(x− .4)/.1, .4 < x < .5,
(.6 − x)/.1, .5 < x < .6,
0, .6 < x < 1.

We then use the estimate (4.18) to compute a posteriori estimates in the error of the
average value.

We wish to understand the different sources of error, so we compare the results
from using both the implicit and explicit Euler methods for the time integration. The
implicit Euler error representation does not have the quadrature error term (4.19).

We show the implicit Euler results in Fig. 4.1.

Fig. 4.1: A solution of the semidiscrete Burgers equation computed using the dG
method in space and implicit Euler in time. The plot on the right is rotated.

We show the results using explicit Euler for time integration, yielding the common
scheme (4.14), in Fig. 4.2.



14 D. ESTEP AND C.S. WOODWARD

Fig. 4.2: A solution of the semidiscrete Burgers equation computed using the dG
method in space and explicit Euler in time. The plot on the right is rotated.

We plot the element contributions in (4.16), i.e.∫
Ii

(U ′ − g(U)) · (φ − πkφ) dt+ U i−1 · (φ − πkφ)|t=ti−1 ,

for each component of the solution in Fig. 4.3. The explicit Euler method clearly
exhibits some mild instability as the element contributions increase in time, whereas
the implicit Euler contributions remain bounded.

Fig. 4.3: We plot the element error contributions for the implicit and explicit Euler
methods. Note the gradual increase in the error contributions for the explicit Euler
scheme as time increases (back towards the upper left). This suggests that the explicit
Euler exhibits some mild instability.

Next we plot the element contributions

(g(U i) − g(U i−1) ·
∫

Ii

(φ− φ(ti−1)) dt

for the quadrature error component. This has a very interesting pattern in that the
quadrature error increases as time passes in all the variables uniformly, see Fig. 4.4.
In fact, the quadrature error comes to dominate the entire error!
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Fig. 4.4: Left: Quadrature error contributions for the explicit Euler solution. Right:
Total error estimate for the explicit Euler solution.

5. An a posteriori analysis for the MAC scheme for the Navier-Stokes
problem. The Navier-Stokes equations describe the flow of fluids. The system of
equations comes about through expressions of the three conservation laws: mass,
momentum, and energy and is written as,

∂ρ

∂t
+ ∇ · (ρV) = 0, (5.1)

ρ
∂V
∂t

+ ρ(V · ∇)V = ρg + ∇ · τ ′ij −∇p, (5.2)

ρ
∂h

∂t
+ ρ(V · ∇)h =

∂p

∂t
+ ρ(V · ∇)p+ ∇ · (k∇T ) + τ ′ij

∂ui

∂xj
. (5.3)

Here ρ is density, V = (u1, u2, u3) is velocity, p is pressure, g are gravitational forces,
k is the thermal conductivity, and h is enthalpy expressed as, h = e + p

ρ where e is
internal energy. For a linear, Newtonian fluid, the viscous stresses are expressed as,

τ ′ij = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
+ δijλ∇ ·V, (5.4)

where µ is the coefficient of viscosity, and λ is the coefficient of bulk viscosity.

5.1. The stationary problem and discretization. We describe the discretiza-
tion and analysis for a stationary version of the incompressible Navier-Stokes equation
in velocity-pressure formulation on domain Ω ⊂ R

2, i.e.

−ν∆u + (u · ∇)u + ∇p = F , in Ω (5.5a)
−∇ · u = 0 in Ω (5.5b)

u = 0, on ∂Ω. (5.5c)

Here, ν > 0 is the kinematic viscosity and u = (ux, uy) and p are the velocity and
pressure unknowns. F = (F x, F y) is the given volume force.

Extending the analysis to a discretization of the full time-dependent version of
the problem is relatively straightforward.
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5.1.1. A mixed finite element scheme. Let Hn(Ω) and H1
0 (Ω) be the stan-

dard Sobolev spaces equipped with the norm ‖ · ‖n,Ω and let

V = H1
0 (Ω) ×H1

0 (Ω),

M =
{
q ∈ L2(Ω) and

∫
Ω

q dx = 0
}
.

Then the weak formulation for (5.5) is, find (u, p) ∈ (V,M) such that

a(u,v) + b(v, p) + c(u,v) = (F ,v), ∀ v ∈ V, (5.6a)
b(u, q) = 0, ∀ q ∈M, (5.6b)

where

a(u,v) = ν

∫
Ω

∇u : ∇v dx,

b(u, q) = −
∫

Ω

q∇ · v dx,

c(u,v) =
∫

Ω

(u · ∇)u · v dx,

(F ,v) =
∫

Ω

F · v dx.

For simplicity, we take Ω to be a unite square [0, 1]× [0, 1] and we partition [0, 1]
in x- and y- direction as following:

0 = x0 < x1 < · · · < xk = 1; 0 = y0 < y1 < · · · < y� = 1.

The corresponding quadrangulation is denoted by Th. We also denote the middle
points with indices of half integers: xi+1/2 = (xi+1 − xi) /2, yj+1/2 = (yj+1 − yj) /2.
Interval distances are ∆xi+1/2 = xi+1 − xi, ∆yj+1/2 = yj+1 − yj for i = 0, 1, · · · , k −
1, j = 0, 1, · · · , � − 1, and ∆xi = xi+1/2 − xi−1/2, ∆yj = yj+1/2 − yj−1/2 for i =
1, · · · , k − 1, j = 1, · · · , � − 1. We connect all the midpoints of the vertical sides of
Th by straight line segments. The corresponding quadrangulation is denoted by T1

h.
Similarly, if we connect all the midpoints of the horizontal sides of Th, then we obtain
the third quadrangulation which is denoted by T2

h. We denote h = max(∆xi+1/2, i =
0, · · · , k − 1; ∆yj+1/2, j = 0, · · · , �− 1).

(a) (b) (c)

Fig. 5.1: Quadrangulations: (a) Th, (b) T1
h, (c) T2

h.
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Note that different discretizations and approximation spaces are assigned to the
three primitive variables p, ux and uy. Specifically, p is approximated by piecewise
constant on each cell [xi−1, xi]×[yj−1, yj ] with degree of freedom located at the center.
That is, the approximate solution P belongs to

Mh =
{
qh : qh|K = constant ∀K ∈ Th and

∫
Ω

qh dx = 0
}
.

As for velocity approximation Ux and Uy, we have

Ux ∈ S1
h =

{
vh ∈ C0(Ω̄) : vh|K ∈ Q1(K), ∀K ∈ T1

h, and vh|∂Ω = 0
}
,

Uy ∈ S2
h =

{
vh ∈ C0(Ω̄) : vh|K ∈ Q1(K), ∀K ∈ T2

h, and vh|∂Ω = 0
}
.

Here, Q1 denotes the bilinear space. Let

Vh = S1
h × S2

h ⊂ V.

Then the discrete mixed finite element scheme becomes, find (U, P ) ∈ Vh ×Mh such
that

a(U,v) + b(v, P ) + c(U,v) = (F ,v), ∀ v ∈ Vh, (5.7a)
b(U, q) = 0, ∀ q ∈Mh. (5.7b)

For the quadrangulation Th, we divide the edges of all squares into two sets. The set
containing all vertical edges is denoted by LV , and the set containing all horizontal
edges is denoted by LH . We are then able to define an operator Ih : V �→ Vh by

Ihu = (I1
hu

x, I2
hu

y) ∈ S1
h × S2

h satisfying∫
l

I1
hu

xds =
∫

l

uxds ∀ l ∈ LV , (5.8)∫
l

I2
hu

yds =
∫

l

uyds ∀ l ∈ LH . (5.9)

As proven in [9], the following properties of this operator are observed :

(i) for all u ∈ V, ∫
Ω

qh div(u − Ihu) dx = 0 ∀qh ∈Mh.

(ii) there exists constant C1 independent of mesh size, such that

‖u− Ihu‖1,Ω ≤ C1h|u|2,Ω, ∀u ∈ V.

(iii) there is a constant C2 independent of mesh size, such that

‖Ihu‖1,Ω ≤ C2‖u‖1,Ω, ∀u ∈ V.

5.1.2. The MAC finite volume scheme. We now derive a mark and cell
(MAC) finite volume scheme for (5.5). First, integrate the x- and y-component of the
momentum equation and the continuity equation on different finite volumes; Next, we
approximate each term within proper approximation spaces. The following notations
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are used in the scheme

ˆ̂ηi,j−1/2 =
1
4

(
ηi−1/2,j−1 + ηi+1/2,j−1 + ηi−1/2,j + ηi+1/2,j

)
,

δxηi+1/2,j−1/2 =
ηi+1,j−1/2 − ηi,j−1/2

∆xi+1/2
δyηi,j =

ηi,j+1/2 − ηi,j−1/2

∆yj
∀η ∈ S1

h,

and

ˆ̂
ξi−1/2,j =

1
4

(
ξi−1,j−1/2 + ξi,j−1/2 + ξi−1,j+1/2 + ξi,j+1/2

)
,

δxξi,j =
ξi+1/2,j − ξi−1/2,j

∆xi
δyξi−1/2,j+1/2 =

ξi−1/2,j+1 − ξi−1/2,j−1

∆yj
∀ξ ∈ S2

h.

The x-component of momentum. On K = [xi−1/2, xi+1/2]×[yj−1, yj] ∈ T1
h, i =

1, · · · , k − 1, j = 1, · · · , �, we have

− ν

∫ xi+1/2

xi−1/2

∫ yj

yj−1

∂2Ux

∂x2
+
∂xUx

∂y2
dydx

= −ν
∫ yj

yj−1

∂Ux

∂x
|xi+1/2 −

∂Ux

∂x
|xi−1/2 dy − ν

∫ xi+1/2

xi−1/2

∂Ux

∂y
|yj −

∂Ux

∂y
|yj−1 dx

= −ν∆yj−1/2δxU
x
i+1/2,j−1/2 + ν∆yj−1/2δxU

x
i−1/2,j−1/2 (5.10)

− ν∆xiδyU
x
i,j + ν∆xiδyU

x
i,j−1.

In the last step, all the gradients are approximated by cell-centered finite difference.
On the boundary elements, we enforce the boundary condition and get

For the nonlinear diffusion term, we have∫ xi+1/2

xi−1/2

∫ yj

yj−1

(U · ∇)Ux dydx =
∫ xi+1/2

xi−1/2

∫ yj

yj−1

Uy ∂U
x

∂y
+ Ux ∂U

x

∂x
dydx

= ˆ̂
Uy

i,j−1/2

∫ xi+1/2

xi−1/2

Ux|yj − Ux|yj−1 dx+ Ux
i,j−1/2

∫ yj

yj−1

Ux|xi+1/2 − Ux|xi−1/2 dy

= ˆ̂
Uy

i,j−1/2∆xi

Ux
i,j+1/2 − Ux

i,j−3/2

2
+ Ux

i,j−1/2∆yj−1/2

Ux
i+1,j−1/2 − Ux

i−1,j−1/2

2
.

(5.11)

Here, in the second equation, Uy is approximated by the average of the four neighbors
and Ux is approximated by the center value on the cell. While, in the third equation,
Ux and Uy are approximated by the average of their two neighbors. For the pressure
gradient term, we have∫ xi+1/2

xi−1/2

∫ yj

yj−1

∂P

∂x
dydx =

∫ yj

yj−1

P |xi+1/2 − P |xi−1/2 dy

=
(
Pi+1/2,j−1/2 − Pi−1/2,j−1/2

)
∆yj−1/2. (5.12)
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Finally, for the source term, we have∫ xi+1/2

xi−1/2

∫ yj

yj−1

F x dydx = F x
i,j−1/2∆xi∆yj−1/2. (5.13)

The y-component of momentum. The y-component of the momentum equation
is integrated on [xi−1, xi] × [yj−1/2, yj+1/2] ∈ T2

h, i = 1, · · · , k, j = 1, · · · , �− 1. Each
integral can be handled in a similar way as for x-component. So we have

−ν
∫ xi

xi−1

∫ yj+1/2

yj−1/2

∂2Uy

∂x2
+
∂2Uy

∂y2
dydx = −ν∆yjδxU

y
i,j + ν∆yjδxU

y
i−1,j

− ν∆xi−1/2δyU
y
i−1/2,j+1/2 + ν∆xi−1/2δyU

y
i−1/2,j−1/2. (5.14)

∫ xi

xi−1

∫ yj+1/2

yj−1/2

(U · ∇)Uy dydx = ˆ̂
Ux

i−1/2,j∆yj

Uy
i+1/2,j − Uy

i−3/2,j

2
(5.15)

+ Uy
i−1/2,j∆xi−1/2

Uy
i−1/2,j+1 − Uy

i−1/2,j−1

2
.

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∂P

∂y
dydx =

∫ xi

xi−1

P |yj+1/2 − P |yj−1/2 dx (5.16)

=
(
Pi−1/2,j+1/2 − Pi−1/2,j−1/2

)
∆xi−1/2.

∫ xi

xi−1

∫ yj+1/2

yj−1/2

F y dydx = F y
i−1/2,j∆xi−1/2∆yj . (5.17)

The continuity equation. For the continuity equation, we integrate over K =
[xi−1, xi] × [yj−1, yj ] ∈ Th, i = 1, · · · , k, j = 1, · · · , �,∫ xi

xi−1

∫ yj

yj−1

−∇ · Udydx = −
∫ xi

xi−1

Uy|yj − Uy|yj−1 dx−
∫ yj

yj−1

Ux|xi − Ux|xi−1 dy.

With Ux and Uy approximated by the average of the corresponding neighbors, we
obtain

−∆xi−1/2∆yj−1/2

{
δxU

x
i−1/2,j−1/2 + δyU

y
i−1/2,j−1/2

}
= 0. (5.18)
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We now collect all the terms and get the following MAC scheme:

− ν∆yj−1/2δxU
x
i+1/2,j−1/2 + ν∆yj−1/2δxU

x
i−1/2,j−1/2 − ν∆xiδyU

x
i,j + ν∆xiδyU

x
i,j−1

+ ˆ̂
Uy

i,j−1/2∆xi

Ux
i,j+1/2 − Ux

i,j−3/2

2
+ Ux

i,j−1/2∆yj−1/2

Ux
i+1,j−1/2 − Ux

i−1,j−1/2

2
+

(
Pi+1/2,j−1/2 − Pi−1/2,j−1/2

)
∆yj−1/2 = F x

i,j−1/2∆xi∆yj−1/2 (5.19)

− ν∆yjδxU
y
i,j + ν∆yjδxU

y
i−1,j − ν∆xi−1/2δyU

y
i−1/2,j+1/2 + ν∆xi−1/2δyU

y
i−1/2,j−1/2

+ ˆ̂
Ux

i−1/2,j∆yj

Uy
i+1/2,j − Uy

i−3/2,j

2
+ Uy

i−1/2,j∆xi−1/2

Uy
i−1/2,j+1 − Uy

i−1/2,j−1

2
+

(
Pi−1/2,j+1/2 − Pi−1/2,j−1/2

)
∆xi−1/2 = F y

i−1/2,j∆xi−1/2∆yj (5.20)

− ∆xi−1/2∆yj−1/2

(
δxU

x
i−1/2,j−1/2 + δyU

y
i−1/2,j−1/2

)
= 0. (5.21)

5.2. An a posteriori error analysis. In order to rewrite (5.19), (5.20) and
(5.21) into the framework of mixed finite element scheme, we first define the following
interpolating operators as in [9]:

Q1
h : C0(K̄1) −→ Q1(K1), such that

(Q1
hφ)(ai) := φ(ai), i = 1, 2, 3, 4, (5.22)

where ai, i = 1, 2, 3, 4, are the four nodes of K1 ∈ T1
h,

Q2
h : C0(K̄2) −→ Q1(K2), such that

(Q2
hφ)(bi) := φ(bi), i = 1, 2, 3, 4, (5.23)

where bi, i = 1, 2, 3, 4, are the four nodes of K2 ∈ T2
h, and

Qh : C0(K̄) −→ Q0(K), such that
(Qhφ)(c) := φ(c), (5.24)

where c is the center of K1 ∈ T1
h. We then introduce the bilinear forms

ah(U,v) = ν

⎧⎨
⎩

∑
K1∈T1

h

∫
K1

Q1
h(∇Ux · ∇vx)dx+

∑
K2∈T2

h

∫
K2

Q2
h(∇Uy · ∇vy)dx

⎫⎬
⎭ ,

∀ U,v ∈ Vh,

bh(U, qh) = −
∑

K∈Th

∫
K

qhQh(∇ ·U)dx, ∀ U ∈ Vh, qh ∈Mh,
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and

ch(U,v) =
(
Ux ∂U

x

∂x
, vx

)
McDcMc

+
(
Uy ∂U

x

∂y
, vx

)
MnDcMc

+
(
Ux ∂U

y

∂x
, vy

)
MnDcMc

+
(
Uy ∂U

y

∂y
, vy

)
McDcMc

, ∀ U,v ∈ Vh,

where the subscripts Mc denotes midpoint approximations, Mn denotes the average
of values on four vertex of any cell and Dc denotes centered finite difference. For the
discretized source term, we define

F h(v) =
∑

K∈Th

∫
K

Qh(F · v) dx.

With suitably chosen test functions, the MAC scheme can be obtained in an equivalent
form as

ah(U,v) + bh(v, P ) + ch(U,v) = F h(v), ∀v ∈ Vh, (5.25a)
bh(U, w) = 0, ∀w ∈Mh. (5.25b)

Subtracting (5.25a) and (5.25b) from (5.7a) and (5.7b) respectively and denote eu =
u− U, ep = p− P , we obtain

ν (∇eu,∇v) − (ep,∇ · v) +
{(

(∇ũ)� v, eu
)
− ((∇ · ũ) eu,v) − ((ũ · ∇)v, eu)

}
= QE1(v) + QE2(P,v) + QE3(v) + QE4(v), ∀ v ∈ Vh, (5.26)

− (∇ · eu, w) = QE2(w,U), ∀ w ∈Mh, (5.27)

where QE1 − QE4 are quadratures errors defined as

QE1(v) = ν

⎧⎨
⎩

∑
K1∈T1

h

∫
K1

(Q1
h − I)(∇Ux · ∇vx) dxdy

+
∑

K2∈T2
h

∫
K2

(Q2
h − I)(∇Uy · ∇vy) dxdy

⎫⎬
⎭ , (5.28)

QE2(qh,v) = −
∑

K∈Th

∫
K

qh(Qh − I)∇ · v dxdy,

(5.29)
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QE3(v) =
(
Ux ∂U

x

∂x
, vx

)
−

(
Ux ∂U

x

∂x
, vx

)
McDcMc

+
(
Uy ∂U

x

∂y
, vx

)
−

(
Uy ∂U

x

∂y
, vx

)
MnDcMc

+
(
Ux ∂U

y

∂x
, vy

)
−

(
Ux ∂U

y

∂x
, vy

)
MnDcMc

+
(
Uy ∂U

y

∂y
, vy

)
−

(
Uy ∂U

y

∂y
, vy

)
McDcMc

, (5.30)

QE4(v) =
∑

K∈Th

∫
K

(I − Qh)(F · v) dx. (5.31)

Here, I denotes the identity operator. The three terms in the bracket of (5.26) are
obtained by linearizing the nonlinear term (u ·∇)u− (U ·∇)U around ũ = 1

2 (u+U).
The adjoint problem of (5.7) is

−ν∆φ + (∇ũ)�φ − (∇ · ũ)φ − ũ · ∇φ + ∇z = ψu, in Ω, (5.32a)
−∇ · φ = ψp, in Ω, (5.32b)

φ = 0, on ∂Ω. (5.32c)

If we multiply φu and ψp to eu and ep respectively, integrate over Ω and add them
up, we obtain

(eu,ψu) + (ep, ψp)

=
(
eu,−ν∆φ + (∇ũ)�φ − (∇·ũ)φ − (ũ·∇)φ − (∇·eu, z) − (ep,∇·φ)

)
=(ν∇φ,∇eu) +

(
eu, (∇ũ)�φ

) − (eu, (∇·ũ)φ) − (eu, (ũ·∇)φ) − (∇·eu, z) − (ep,∇·φ)

= (ν∇φ,∇eu) +
(
(∇ũ)�φ,eu

) − ((∇·ũ)eu,φ) − ((ũ·∇)φ, eu) − (ep,∇·φ) − (∇·eu, z)
= (ν∇(φ − Ihφ),∇eu) +

(
(∇ũ)�(φ − Ihφ), eu

) − ((∇·ũ)eu,φ − Ihφ)
− ((ũ·∇)(φ − Ihφ), eu) − (ep,∇ · (φ − Ihφ)) − (∇ · eu, z − Phz)

+ (ν∇Ihφ,∇eu) +
(
(∇ũ)�Ihφ, eu

) − ((∇ · ũ)eu, Ihφ)
− ((ũ · ∇)Ihφ, eu) − (ep,∇ · Ihφ) − (∇ · eu,Phz)

= {(ν∇(φ − Ihφ),∇u) + ((u · ∇)u,φ − Ihφ) − (p,∇ · (φ − Ihφ))} + (∇·U, z − Phz)
− (ν∇(φ − Ihφ),∇U) − ((U·∇)U,φ − Ihφ) + (P,∇·(φ − Ihφ)) − (∇·u, z − Phz)

+ {QE1(Ihφ)) + QE2(P, Ihφ) + QE3(Ihφ) + +QE4(Ihφ) + QE2(Phz,U)}
=Tr + {QE1(Ihφ) + QE2(P, Ihφ) + QE3(Ihφ) + +QE4(Ihφ) + QE2(Phz,U)} ,

where

Tr = − (ν∇(φ − Ihφ),∇U) − ((U · ∇)U,φ − Ihφ) + (P,∇ · (φ − Ihφ))
+ (F ,φ − Ihφ) + (∇ ·U, z − Phz)

is the residual term.

6. Conclusions. We developed a preliminary a posteriori error analysis for the
Lax-Friedrichs scheme applied to Burger’s equation using the adjoint of the modified
equation applied to the parabolic viscous Burgers equation, a scalar hydrodynamic
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model. We developed a preliminary analysis of the Lax-Friedrichs scheme for the
hyperbolic inviscid Burgers equation and initiated an implementation for testing. We
developed an a posteriori error estimate of the MAC scheme for the incompressible
stationary Navier-Stokes hydrodynamic system in 2D and initiated an implementation
of the adjoint solution for testing.

Through this project we have assessed that in the short term, it is not yet feasible
to apply adjoint methods to hydrodynamic systems emitting discontinuities such as
we have at LLNL. Further work is still required to mature tools such as modified
equation analysis, variational forms, and viscous solutions for use within a posteriori
error analysis for discretizations of hydrodynamic systems emitting discontinuities.
We have established a collaboration between LLNL and Colorado State University
and will continue adjoint method development for these systems through students
and postdocs as well as through future proposals to LDRD and NSF.
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